Decoding Natural Sounds in Early "Visual" Cortex of Congenitally Blind Individuals

Curr Biol. 2020 Aug 3;30(15):3039-3044.e2. doi: 10.1016/j.cub.2020.05.071. Epub 2020 Jun 18.

Abstract

Complex natural sounds, such as bird singing, people talking, or traffic noise, induce decodable fMRI activation patterns in early visual cortex of sighted blindfolded participants [1]. That is, early visual cortex receives non-visual and potentially predictive information from audition. However, it is unclear whether the transfer of auditory information to early visual areas is an epiphenomenon of visual imagery or, alternatively, whether it is driven by mechanisms independent from visual experience. Here, we show that we can decode natural sounds from activity patterns in early "visual" areas of congenitally blind individuals who lack visual imagery. Thus, visual imagery is not a prerequisite of auditory feedback to early visual cortex. Furthermore, the spatial pattern of sound decoding accuracy in early visual cortex was remarkably similar in blind and sighted individuals, with an increasing decoding accuracy gradient from foveal to peripheral regions. This suggests that the typical organization by eccentricity of early visual cortex develops for auditory feedback, even in the lifelong absence of vision. The same feedback to early visual cortex might support visual perception in the sighted [1] and drive the recruitment of this area for non-visual functions in blind individuals [2, 3].

Keywords: MVPA; auditory feedback; blind; brain decoding; early visual cortex; fMRI; fovea; natural sounds; periphery; visual imagery.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation
  • Blindness / congenital*
  • Blindness / physiopathology*
  • Feedback, Sensory / physiology
  • Humans
  • Magnetic Resonance Imaging
  • Sound*
  • Visual Cortex / diagnostic imaging
  • Visual Cortex / physiology*